Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3064, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594232

RESUMO

The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-ß, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-ß signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.


Assuntos
Fator de Crescimento Epidérmico , Junção Esofagogástrica , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Junção Esofagogástrica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Análise de Célula Única
2.
Nat Commun ; 13(1): 1030, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210413

RESUMO

Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.


Assuntos
Chlamydia , Coinfecção , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Reprogramação Celular/genética , Feminino , Papillomavirus Humano 16/genética , Humanos , Organoides , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...